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The paper [l] introduced a class of nonstiff shells, i.e. shells which for certain types of 
support have nontrivial equilibrium configurations in the absence of exterior loads. As the 
definition implies, the chsracteristic property of the nonstiff sbells consists of the fact 
that the lowest critical load for such shells is a negative quantity. Herein, WC obtain rigo- 
rous proof of the existence of nonstiff shells. Namely, it is shown that, for a thin spherical 
shell with immovable, hinged support at the boundary, there exists another equilibrium con- 
figuration close to a mirror image. The proof employs the asymptotic method developed in 
12 and 31. 

1. Formalntion of the Problem. Consider the system of nonlinear differential 
Eqs. of an unloaded sphsrical sbell[4 and 51 

e#Av -‘/gas + pa = 0, @Au+uv-pv=O 

A(...)~-p+f$~( ), 
(1.1) 

O<Pf;h O<P<+- 

with the boundary conditions 

i 
dv P 

dp-pv p=l=o, 
1 [ 

g++ g] =_o; 
P=l 

5) 
@==a 

<co, $ _<‘= fl.2) 
I 

All quantities in (1.1) and (1.21 have been nondimensionalized, with 

R dw yR dF hR 
u=(Idr, v=xdr, @ = - 

lzv * 78=12(1 -py 

Here, w is the deflection of the shell middle surface; F is a stress function, E is Young’s 
modulus, p is Poisson’s ratio, h is the shell thickness, o is the radius of the exterior sur- 
face, R is the shell radius and r = a p. The small parameter S* characterizes the shell wall 
thickness. The boundary conditions correspond to a condition of hinged, immovable snpport. 

It is easily seen that the problem posed by (1.11, (1.21 has the trivial solution u = u I 0. 
This solution corresponds to an equilibrium form with zero stresses and strains. The qnes 
tion arises whether or not this form is unique; a study of very thin shells shows that it is 
not. For example, the hollow shape of a poorly inflated ball is retained after the pressure 
causing it has been removed. We will attempt to explain this fact with the aid of (1.1). Since 
we are concerned with very thin shells, we will consider small values of es. 

Setting s = 0, we obtain the algebraic Eqs, 

-$++ua=O, uovo -pvo=o (1.31 

There are two solutions. One of these is u. = uo 
isfies (1.1) and (1.2). The second solution 

E 0, the trivial solution which also sat- 

vo = 0, uo = 2p (1.4) 
corresponds to an e 

The solution (1.4 ‘f” 
ilihrium form which is close to a mirror image. 
satisfies (1.11. but does not satisfy the second boundarv condition in . . 

(1.21. Thus, one would expsct that, for small s, the problem (1.11, (1.2) has a second sola- 
tion which behaves like (I.41 everywhere inaide the region, but when it approaches the boun- 
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dary it undergoes a rapid change so as to satisfy the boundary conditions (1.2). 
In order to show the existence of a second solution, we will first construct the asymp 

totic expansions for small e in the neighborhood of (1.4) (Section 2). and then we will show 
the existence of a solution to (l.l), (1.2) f or which these asymptotic expansions hold (Sec- 
tion 3). Here we make use of a theorem from [2 and 31 which has previously been employed 
in connection with asymptotic solutions of some nonlinear problems. Finally, in Section 4, 
we study an example and present curves for the fundamental Gharacteristic of the second 
form of equilibrium. 

Note that the existence of nonstiff shells under the boundary conditions (1.2) was also 
confirmed by a detailed numerical analysis of this problem in [6]. 

The asymptotic analysis of the problem given below clarifies to some extent the essence 
of certain hypotheses of Pogorelov [y]. 

2. Conatrnction of the asymptotic expansions. Introduce the following 
notation: Let the vector V = (u, u) be the solution and let P [VI be the left-hand side of 
(1.1). For the second solution, we construct the asymptotic expansions (2.1) 

84 s=o s=o s=o 8=0 s=o 

The functions u,@) and u,@) are obtained with the aid of the first iterative procedure 
[El. Namely, we require that 

P [Vu] = 0 (au+‘), 

s=o s=o ’ 

We set the coefficients of the various powers of a equal to zero, and we obtain (1.3) for 
the determination of uo and uu (for which we choose the second solution, (1.4)); for the det- 
ermination of ua and ua, we have a system of homogeneous linear equations. Thus, 

u*(P) = us (PI = 8 (s - 1, 2, . . . . n) 

Bouudary la er type functions h,@) and g,@) 
J 

are obtained by means of the second itera- 
tive process [8 . For this purpose, we seek the differences u - vo and u - uo (u, = 0, II,, = 
= 2~) in the form 

v= i asha, u-2p = i: esgs (2.2) 

Substitute (2.2) into (1.1) az1.2). 
8=0 

and perform the change of variable p = 1 - r; then 
expand all coefficients in Taylor series about the point r = 0, and set r = cu. Now setting 
the coefficients of eO, e1 , l *-t en equal to zero, we obtain a nonlinear system of Eqs. in 

ho and go 

ho” + ‘/a goz + go = 0, go”-go.%-hiI= (2.3) 

while for h,, g* b = 1, 2, . . . . n) we obtain 

- hs” - g8 (i + go) = + 2 gkg, ;- rh,_l” - h,_; - 2 +hrn + rg,_, (2.4) 
j.+m=s 1. +m+a=s 

(1%) rn#O) 

- g8” + ha (I+ go> + .Qb = - 2 h,g, - Q,_,” - g,_; - 2 tkgm - I&_, 

Similarly, from (1.2), we obtain the first boundary condition for ho and go when t = 0; the 
second bouudary condition is obtained from the requirement that the solution possess a boun- 
dary layer character in the neighborhood of p = 1, i.e. 

g,’ (0) = 0, ha’ (0) = 0, go (=I = 0, ho(~) = 0 (2.5) 

From (2.3) and (2.51, it follows immediately that 
fra=g,=o (2.6) 

Now, from (2.4), setting I = 1 and utilizing (2.6), we obtain 

h,” + g, = 0, g,” -b=O 
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with the boundary conditions 

g,’ (81 3 2 (1 + P), A,’ (0) = 0; &5(m) = h(m) = 0 
whence 

hi(p)=- )/2(1+Nexp (-s) (cm !&-+sin 9) 

739 

(2.7) 

gl (P) = - 1/H (1 + IL) ew (-2) (cm +$--sins) 

The functions h, and gd (S >/ 21 are obtained from systems of linear differential Eqs. 
with constant coefficients 

- 

t75 

i 

1 P 

h,” + g5 = fl, (a g5” - h5 = 125 0) (2.81 

where ft.(t) and f2. (t) are finite polynomials consisting of terms 
of the form 

(-FM) 

with m, k, 1 and n as integers not exceeding S. Note the boundary 
conditions 

-h,‘= p 2 tkhm, 
k+m=s-1 k+m=s-1 

(t=o) 

h5(~)=gs(-)=0 (s = 2, 3,. , .) n) (t = 00) (2.9) 

It is easily seen that h, and g, will be boundary layer type 
functions [8]. 

Finally, we introduce the infinitely differentiable, monotonous 
functions a,(p) and B,(p), t o correct for the incompatibility (of 
exponential order of smallness) of h, and g., respectively, in sat- 
isfying the boundary conditions (1.21 for p = 0 

Fig. 1 

i 

ag (P> = 1 - h5 (0) (0 d p < 0.1) 
0 (0.2dP6fl 

(2.10) 

-a.z 
v= i a’hs + 5 ego8 + xu, 

.9=0 s=u 

-0.4 

Fig. 2 
o = 2P + 5 eSgs + 2 e’8, + x,, 

s=o 8=0 

Here, ht and gt are as defined in (2.71 while h, and g, (S >/ 2) are solutions of (2.81 and 
(2.9). B e ow, in Section 3, we will utilize the notation 1 

(P*=u-xu, $u=u--zu (2.111 

Note that, from (2.101 and the explicit expressions for h,, g,, a, and pa, we may readily 
obtain the estimates(+) 

4 ‘p, I < mlaP* Irp,I<mpep (2.121 
As an example, we deduce Wi, in terms of p. Thus, 

lim hi (P) + or (PI= lim Ai (P) --hi (0) _ 6 

P4 P P-@ P I dP P-o 

Thus, the asymptotic expakons (2.11 may he writ- 
ten 

3. Substantiation of the asymptotic expansiona. The existence of 
a nontrivial solution. We introduce the vector space VI (v, a), consisting of: 

‘1 Here and hereafter ml and cl are certain positive constants independent of e. 
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1) Vectors with the finite norm 
1 
ia 

2) The closure of the set of smooth vector-functions satisfying conditions (1.2), with 
the norm (If) 

Problem (l.I), (1.2) will be considered as the functional Eq. 
P(v)=0 (3.1) 

where the operator P is defined by the left-hand side of system (1.1). 
The operator P maps from the H space into the L, space, In order to show this, we will 

need the following estimates: 
1 

s 
'(~4+~~)dp~~*~Vll~, max~l~~+l~l~~~8~V~~ (O<P<f) (3.2) 

0 

We will now prove inequalities (3.2). Consider the differential Eqs. 

Au = in, 

It is easily seen that the Eqa. in (3.3) are, respectively, equivalent to the integral rela- 
tions 

0 9 0 -4 
(3.4) 

a=+ 

0 n 0 n 

Now, (3.2) is obtained from (3.4) by the double application of the Buniakowski inequality. 
Tiuorcm 3.1. Problem (l.l), (1.2) h as, in addition to the trivial solution u = u I 0, a 

second solution for which the asymptotic expansions (2.10) are valid, whereupon the follo- 
wing estimates hold: 

max I+ @)I d m& 

max 1.~ (&I G mpsn (n = I, 2, . ..) (0 < p < 4) (3.5) 
To show existence, we make use of Kantorovich’s th 

of Newton’s method for operator equations, similarly to Ie 
orem [9] concerning the convergence 
21. As a first approximation, we use 

the truncated asymptotic series V, * = (q k, sLk>. 
From Kantorovich’s theorem, one easily obtains 12 and 31 the following theorem leading 

to the proof that there exists in the neighborhood of V,* 
totic representation V,*. 

a solution to (3.1) with the asymp- 

Theorem 3.2. Suppose that the operator P is defined in the sphere Q(llV - Vk* 1 
of the H space, and has a continuous second derivative in the closed,sphere oo()jV - 1 

.$ R) 
k*II & 

( r < RI. Suppose further that there exists an operator Pr (V) I [Pv; (V)]-‘, and the follo- 
wing conditions are satisfied: 

4) II P (V,*) IlL, a &a”+’ , 2) IIPV’U<C8 (3.6) 

3) II Pr U(L%--HI Q C!Krn (2m<k+*) (3.7) 

Then V* is a solution of (3.1) for sufficiently small a 

E < (2C~CaaC*)~m-~-1 

and the following estimate holds: 

IV+- vlc’ nrr < Cak+l-m 
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We will show that the conditions of Theorem 3.2 are satisfied with m = 4, independently 
of k, and k may be chosen so that k > 2nr - 1. 

The first estimate (3.10) follows dirt&y from the relations 
=‘A’% - ‘/,g,’ + p$k = 0 (8 +‘), @A$k + (Pkqk - P(Pk = 0 bk+, 

which are easily established by substituting qk and $k (see (2.11)) into the left-hand side 
of (1.1) and (1.2). 

Further, we will show that the following estimate holds: 

II rc II++HJ < Ge’* (3.8) 

For this purpose, we consider the Frkhet derivative of the element k’, l 

Pv;’ (V) s (e*Av - ‘Ipk U + PU, eaAu + gk v + qk” - f’v) 

Consider the system of Eqs. 

PX (V)=f, f = (fl, fr) (3.9) 

with boundary conditions (1.2). With the aid of (2.10) and (2.11). (3.9) may be written in the 
folm 

@A v - pu + EQU c fi, e*Au + pv - er1v + srru = jr (3.10) 

Here 
81 = 8-l ($k - 2Ph a¶ - e-*k. 

Multiplying the first Eq. in (3.10) by (u - u) and the second by (u + a), then integrating 
over the range zero to unity and combining, we obtain 

1 1 . 
es U Pv’a + $+pu*2+f) dp -j- Sap* (I) - S'pV'(i) f 

s 
p (14' f V') dp - 

0 0 

1 1 

-&(u2+ua)-s&+u)ldp= [j1(u--u)+j2(~+u)]~p-2~‘~u(~)u(~)(3.11) 
s s 
0 0 

Note that in obtaining (3.11) we must mahe use of an eqnation which holds for all smooth 

fnnctions satisfying the boundary conditions (1.2): 

1 1 

s 
‘Auvdp--Avudp=2~s(l).u(l) 

s 
(3.12) 

0 0 

The above Eq. can be proved by integration by parts. Utilizing (1.2), we obtain 
1 

s Avudp=-u((I)v(l)-u(i)v’(l)+ 
0 

Interchanging u and II and subtracting one equation from the other, we find that 

Utilizing (1.2). 
Expression 

Furthermore, it 
hold: 

1 

s 
l ( I fl I + I fz I) ( I v I + I u I ) dP + e*p (02 (1) + u* (1)) (3.13) 

0 

follows from (2.12) that, for sufficiently small ,9, the following estimates 

I s1 (P. 8) I < 4 (1 + P) PI Isa (P, e) I < 4 (1 + P) P (3.14) 
Applying (3.14) together with the obvious inequalities 2uu ( us + wr and us\< up+ ~2 to 

the third integral in the left-hand side of (3.11), we obtain 
1 1 

1 1 

s . 
Auvdp- Avudp s = v’ (1) u (1) - li (1) v (1) 

0 0 

we arrive at (3.12). The right-hand side of (3.11) may be estimated from 

JE-e s [s1(va+u2)-s2u(v+u)1dp<10e(1+p) p(v2+us)dp s (3.15) 

0 0 
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I 
We now find that 

1 1 

s 
P~“‘+wP+Y~+ 

s 
P (vg + us) dp 

0 
*O 

(3.16) 

for <20(I+p) 

Tskfng note of (3.16) and (3.13), we obtain from (3.11) 

SC 

1 

QV'+ $ +pfiB + F 
) dp i-f s 

P (0% + ~9 dp d 
0 0 

! 

Fig, 3 ~~(lhl+lf.t)(l~l+/~l)~~~~~~~~~~(~)(3~7) 
0 . 

Msking nse of the obvious inequality 

~~~v~+~)dp>,2~vv8dp=u’o 
0 0 

we obtain from (3.17) t 1 

e’ (I - 2p) 5 (pv’a f- $ +pu'+~)dp+$Sp(Y'+u')dp~ 
0 0 

1 

~~~lf~l+lf~,,~l~l+l~l~~~ (O<r<f) 

Whsnee, we hsve’over tke interval 0 ( p Q 1 

sa(i-_)(noaxIul~+maxIvp)d2(f~L,lIV 
8 

HL, f 2 II f I$ (max I u la + max 1 v pf’y3 18) . 

From (3.18), we obtain 
~I”I+~~~vI<4e’l(~+2~)-Ufilt. (OGP<~l 

Now we obtain from (3.10) an estimate in H. We have 
Au = e-S (fl + pu - eslu), 

Au = ra (k - pu + eslv - 8.~) 

Utili~tio~ of (3.18) leads to 

[ 
5Ufll& 

IAVO-r I~II+~~+.~~~ 1 , 

5 II f IlLI 
I 

(3.19) 

es (1 - 2~) 

Finally, application of (3.19) yields 

II V lla d cae* II f IL,* II v 1J.f Q CaC* II P”;’ 09 IlL, 

Whence, it is readily found that the operator P l ’ has an in- 
verse, and tbc estimate (3.8) holds. vk 

Consider the bilinear form 

.ii 
P t 

Fig. 4 

P” (V’) (V”) =_ (-u’u”, u’v” + Y’U”) 

Applying (3.2), we obtain #P”(V’) (V”) 
IIn* Y 

L \< C, IlV’ll~llV” 
Whence, the second estimate in (3.6) fol a&. 

Thus, the conditions of Theorem 3.2 are satisfied if k > 7 and 
E is sufficiently small (0 < 8 < Q). Therefore, (3.1) has a solu- 

tion V l u (u, u), for which the following estimate holds: 

11 V* - V,* lH < me&d (k>7) (3.20) 

Now, employing the triangle inequality, the theorem for embed- 
ding C in H (see (3.2)) and the explicit expressions for h, and g., 
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we obtain (3.5) from (3.20). Note also that the estimates for max Iz,‘(p)I and maxlz,‘(p) 1 
can be obtained in a similar manner. 

4. Example. The asymptotic expansions (2.10) provide very simple formulas for the 
evaluation of the fundamental characteristic value for the second equilibrium form. Let 
H/h = 8, where H is the shell height. Then ea = ?4h/Hy = 0.141 (cc = 0.3, 02 = 2 RH). 

The quantities u and a are calculated within accuracy of order e , inclusively, by means 
of Formulas (2.10) and (2.7) (Figs. 1 and 2). 

The deflection and moment are obtained tom the Formules (Figs. 3 and 4) 
P 

du 
udp, Mr=~++u 

1 

The author wishes to thank 1.1. Vorovich and V.I. Iudovich for their help and support in 
this work. 
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